023小说网 > 其他类型 > 数学纪闻录 > 第35章 尚需深思

第35章 尚需深思(1 / 1)

推荐阅读:

979 亥姆霍兹——这位生理学家为了生理学而学习物理学,为了物理学而学习数学,如今在这三个领域都跻身顶尖行列。

——克利福德,wk

《科学思想的目标与工具》;《讲座与论文集》第1卷(伦敦,1901),第165页

亥姆霍兹者,精研生理,为明其理而习物理,为通物理而究数学。三艺兼修,终成翘楚,声闻遐迩。

——克利福德,wk

《科学思想之鹄的与器用》;《讲稿及论文集》第一卷(伦敦,1901),一百六十五页

980 据说雅可比因在语言学方面展现出的卓越天赋,吸引了柏林语言研究所所长伯克的特别关注与友谊,他在大学学习两年后,经过激烈的思想斗争,才最终选择投身数学。

——西尔维斯特,jj

《数学论文集》第2卷(剑桥,1908),第651页

闻雅可比年少时,耽于文辞,博通经籍,为柏林文研所长伯克所重,引为忘年。及入庠序二载,深思熟虑,始弃文从数,终成一代宗匠。

——西尔维斯特,jj

《数学论文集》第二卷(剑桥,1908),六百五十一页

981 当约翰逊博士感觉或自认为感觉自己的想象力紊乱时,他经常回归的是算术研究。

——鲍斯韦尔

《约翰逊传》(哈珀版,1871)第2卷,第264页

约翰逊尝罹心疾,神思恍惚之际,辄以算术为良药,藉此澄心涤虑,暂忘烦忧。

——鲍斯韦尔

《约翰逊传》(哈珀版,1871)第二卷,二百六十四页

《史密森尼学会年报》,1874年,第132页

开普勒身怀二质,若冰炭同器,实堪称奇:其一如火山之炽,想象奔逸,不可羁勒;其一若精铁之坚,心专运算,不辞繁难。其揣度天体行迹,深信必有简则存焉,尝谓之“和声之律”,遂倾毕生心力,誓欲穷其究竟。

虽历败绩千重,虽算牍舛讹频出,然其志愈坚,如孤舟破浪,直指心之所向。孜孜矻矻,廿二载倏忽而逝,终未稍懈。于欲为宇宙立典、留名于造化鸿章者,廿二年劬劳,何足挂齿?

及功成,乃慨然曰:“骰子既掷,天命已定;典册既成,俟诸来者。今世览之可,后世观之亦可。上帝俟解人于六千年,吾书静待知音,又何妨!” 其气凌霄,其言铿然,诚无愧为天人之师也。

——阿拉戈《拉普拉斯颂词》,录于《史密森尼学会年报(1874)》百三十二页,鲍登·鲍威尔引

现代分析学三大宗师——拉格朗日、拉普拉斯与高斯——恰为同代人。三人风格迥异颇值玩味:拉格朗日形质俱美,推导过程纤悉必陈,虽立论宏阔却易循其理;拉普拉斯则不作解释,文风粗率,但得结论正确,无论证或有瑕疵亦所不计;高斯之精确典雅不逊拉格朗日,然较拉普拉斯更难追蹑,因其抹去所有推导痕迹,务求证明既严谨又简练综合。——鲍尔《数学史》(1901年伦敦版)第463页

引自卡约里:《美国数学教学史》(华盛顿,1896年),第104页

每见拉普拉斯笔下由此显见之语,吾便知须以数时苦工填补论证裂隙,究明其之理。——鲍迪奇语,引自卡约里《美国数学教学史》(1896年华盛顿版)第104页

比奥尝佐拉普拉斯校订《天体力学》,自言每至推理论证之处,常难复循其迹。然但得结论确凿,辄以“显而易见”敷衍,不复详述。

——鲍尔《数学史》,四百二十七页

莱布尼茨智力之伟大与广博,殆难觅匹敌者。——密尔《逻辑体系》第2卷第5章第6节

细察可知,莱布尼茨对法德两国百余年来纯数、应用数学特殊品味之塑造,其影响力远逾他人。斯图尔特《人类心灵哲学》第3部第1章第3节

莱布尼茨之创见,肇启近代格物致知之新途。其志不在解一时一事之惑,而务于宇宙间立秩序、求对称、致和谐,以成周全明晰之境。虽后世学者于析微剖疑之术或更精熟,然论及开辟鸿蒙、奠定轨则之功,终莫能与莱氏相埒。

——梅尔茨,jt《莱布尼茨》,第六章

这种心态始终对数学和哲学研究极为有利。无论何时,进步取决于思想的精确性和清晰性,且无论何时,通过将各种研究简化为通用方法,通过将众多概念归为一个共同术语或符号来实现这种精确性和清晰性,它都证明是不可估量的。它必然引入数的特殊性质——即它们的连续性、无限性和无限可分性——就像数学量一样,并打破了自然界中存在不可调和的对立或无法跨越的鸿沟的观念。因此,在莱布尼茨致阿尔诺的信中,他表示自己的观点是,几何学或空间哲学构成了通向运动哲学(即关于有形事物的哲学)的一步,而运动哲学则是通向心灵哲学的一步。

——梅尔茨,jt

《莱布尼茨》(费城),第44-45页

莱布尼茨嗜法循序,笃信乾坤之内,秩序谐和恒在。且谓人欲穷究物理,必先整饬己思,使循轨辙。初或习焉不察,渐成圭臬。其癖好之肇,盖因早岁研核律学、算理。观其溺于元素排布之术,便知此中情致;察其以数理推演为思辩楷模,更见端倪。至若析群言为简辞,纳众理于要旨,欲将逻辑之学,化入条贯之境,则其志愈坚。

方其少壮,已构宏论:欲创普世算法,立玄通符契,使万端思辨,皆入彀中;更冀以代数之妙,转玄奥之哲理为确凿之学。此等襟怀,于格物穷理,裨益良多。凡治学求进,贵在精审明澈,若能约繁就简,汇异归同,则事半功倍。其法引数理之妙,如绵延、无极、可分诸性,尽融其间,更破世人“物有扞格,道有断阙”之见。故其致书阿尔诺,尝言几何乃通运动之津梁,运动又为达心性之阶梯,足见其学脉相承之思。

——梅尔茨,jt

《莱布尼茨》(费城),第四十四至四十五页

——拉普拉斯

《概率的哲学随笔》;《全集》(巴黎,1896),第7卷,第119页

莱布尼茨研二进制算术,见“一”与“零”相生,以为暗合造化之妙。盖“一”可拟神,“零”可喻无,恰似太初创世,自虚无而生万有;正如数位之中,“一”“零”相济,可演万千。此说深惬其怀,遂驰书耶稣会士格里马尔迪。时格里氏掌中国算学,莱氏冀以此玄理,感化笃好格致之帝君,引其归信基督。

——拉普拉斯

《概率哲学疏议》;《全集》(巴黎,一八九六年),第七卷,第一百一十九页

——凯瑟,cj

《科学、哲学与艺术演讲集》(纽约,1908),第31页

——凯瑟,cj

《科学、哲学与艺术讲录》(纽约,一九零八年),第三十一页

——克莱因,f

《数学演讲集》(纽约,1911),第24页

李自始以微分方程为鹄的,其几何新说、连续群论,皆为羽翼,助其登峰。

——克莱因,f

《数学讲录》(纽约,一九一一年),第二十四页

章节报错(免登录)
最新小说: 人在吞噬,盘龙成神 分家后,我打猎捕鱼养活一家七口 阳间路,阴间饭 人在超神,开局晋级星际战士 名义:都这么邪门了还能进步? 兽语顶流顾队宠疯了 迷踪幻梦 重生汉末当天子 国师大人等等我! 顾魏,破晓时相见