023小说网 > 其他类型 > 数学纪闻录 > 第77章 尚有一题,余究之近四十载

第77章 尚有一题,余究之近四十载(1 / 1)

推荐阅读:

引自g d 菲奇为曼宁所着《第四维度浅释》(纽约,1910年)所作的引述,第58页。

上世纪最富启迪、最着之成就,莫过于非欧几何之发见。——希尔伯特,d引自菲奇于曼宁《第四维度浅释》(纽约,1910年)所引,五十八页。

非欧几何——人类智识解放者中之先导……——凯泽,c j《数学基础》;《科学:宇宙史》,八卷(纽约,1909年),百九十二页。

每位中学教师皆必知非欧几何一二,因其为数学中少数借流行语传于广众者,故师者随时可能被问及。物理中亦多此类——几每新发现皆然——借流行语成俗谈,故师者必当知晓。试想物理师不知伦琴射线或镭,其状可知;数学家不能言非欧几何,亦类于此。——克莱因,f《高观点下的初等数学》(莱比锡,1909年),二卷,三百七十八页。

《演讲与论文集》(纽约,1901年),第1卷,第356、358页。

罗巴切夫斯基之于欧几里得,犹维萨里之于盖伦,哥白尼之于托勒密也。实则,后二者间有可鉴之相似。哥白尼与罗巴切夫斯基皆有斯拉夫血统,各于科学观念中掀起巨革命,唯彼此可拟。此二变革之所以极重,因其皆为宇宙观念之变……凭此二革命,作为人类知识对象、故为人类所重者之“宇宙”“大化”“万物”观念,已然崩解。——克利福德,w k

《演讲与论文集》(纽约,1901年),一卷,三百五十六、三百五十八页。

致鲍耶的信(1799年);《全集》,第8卷(哥廷根,1900年),第159页。

昔吾与君相距较近,未及多闻君于几何基础之研,深以为憾。不然,必省我诸多徒劳,赐我更多安宁——如我之性情,此类事若尚有诸多待思,终难安也。吾于此亦稍有进益(虽他务繁杂,少暇及此),然所行之路,未达君所言之意,反多致疑几何之真。诚然,我有诸多发现,众人或视为证,然我观之,实无证明之力。譬如,若能证有直线三角形,其积大于任何给定曲面,则我可严建全几何。今众人必以此为公理,我则不然。可思议者,无论三角形顶点选得多远,其积或终在某限之下。我亦得他类定理,然无一能令我满意。——高斯

致鲍耶书(1799年);《全集》,八卷(哥廷根,1900年),百五十九页。

小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!

2024 假设欧几里得几何不成立,很容易就能说明相似图形不存在;在这种情况下,等边三角形的角会随边长变化,我觉得这一点完全没有荒谬之处。角是边长的函数,而边长也是角的函数,当然,这个函数同时包含一个恒定的长度。说似乎能先验地给出一个恒定长度,这听起来有点矛盾,但我同样没觉得这有什么不一致的地方。其实,要是欧几里得几何不成立,那我们就能拥有一个通用的先验测量标准,这倒是挺理想的。

——高斯《致格灵的信》(1816年);《高斯全集》第8卷(哥廷根,1900年),第169页。

设欧氏几何不验,则相似之形不存,此易明也。是时,等边三角形之角随边而变,余观之,了无悖谬。角为边之函数,边亦为角之函数,此函数固含一恒长。谓恒长可先验而定,似属悖论,然余亦未见其抵牾。诚若欧氏几何非真,则吾辈可得通用先验之度量,斯为善也。

——高斯《与格灵书》(1816);《高斯全集》卷八(哥廷根,1900),页百六十九。

2025 我越来越确信,我们几何学的必然真理是无法证明的,至少人类的理智无法向人类的理解力证明这一点。或许在另一个世界,我们能对空间的本质有其他的洞察,而这些洞察目前是我们无法获得的。在那之前,我们必须把几何学看作与算术(纯先验的)不同,而是和力学处于同等地位。

——高斯《致奥伯斯的信》(1817年);《高斯全集》第8卷(哥廷根,1900年),第177页。

余愈信,吾辈几何之必然真理,不可证也,至少非人类智识所能向人类理解力证明者。异世之中,或得洞察空间本性,此乃今所未及。然则,几何不当与算术(纯然先验)同列,而应与力学齐级。

——高斯

《与奥伯斯书》(1817);《高斯全集》卷八(哥廷根,1900),页百七十七。

2026 毫无疑问,直线三角形的内角和不超过180°这一点是可以严格证明的。和不能小于180°,情况就不一样了;这才是真正的戈尔迪之结,是导致一切失败的礁石……我研究这个问题已经三十多年了,我怀疑没人比我更认真地对待过它,尽管我从未就此发表过任何东西。,会引出一种奇特的几何学,它与欧几里得几何学完全不同,却自始至终保持一致。我已经把这种几何学发展到让自己满意的程度,除了一个无法先验确定的常数之外,我能解决其中出现的所有问题。人们假设这个常数越大,它就越接近欧几里得几何学,当这个常数取无穷大时,两者就完全一致了。这种几何学的定理在某种程度上看似矛盾,对不熟悉的人来说甚至荒谬;但仔细冷静地思考后会发现,它们本身并没有什么不可能的……我一直努力想在这种非欧几里得几何学中找出一些矛盾或不一致之处,却都徒劳无功,其中唯一看似违背常理的是,空间似乎必须包含一个“明确确定的”(尽管我们不知道)线性量。不过,在我看来,尽管形而上学家们空谈不休,但我们对空间的真正本质其实知之甚少,甚至一无所知,所以不能把看似不自然的东西当作“绝对不可能”的东西。如果非欧几里得几何学是正确的,而且这个常数与地面的或天体测量范围内的量有关,那么它就可以通过后验来确定。

——高斯《致陶里努斯的信》(1824年);《高斯全集》第8卷(哥廷根,1900年),第187页。

直线三角形三角之和不逾百八十度,此诚可严证。然谓其和不可以小于百八十度,则不然。此乃真戈尔迪之结,诸般困顿之礁也……余究此三十余年,未敢谓有人过之,然未尝有述。设角和小于百八十度,则生一异几何,全非欧氏,然自洽无间。余已推演至此,颇合己意,唯其一常数不可先验定之,此外诸题皆可解。常数愈大,愈近欧氏,至无穷则合一。其定理或似悖论,未习者觉其谬,然静思之,未见不可能……余竭力寻其矛盾,终不可得,唯空间似含“确然定之”(然吾辈未知)之线量,稍违常理。然形而上者空谈,吾辈于空间真性实所知甚少,未可将不类常者视为“绝无可能”。若非欧几何为真,且此常数关乎地与天体度量,则可后验而定。

——高斯

《与陶里努斯书》(1824);《高斯全集》卷八(哥廷根,1900),页百八十七。

2027 还有一个我研究了将近四十年的课题,闲暇时我又重新思考了一下,就是几何学的基础……在这方面,我也巩固了很多东西,而且我的信念愈发坚定,即几何学不可能完全建立在先天基础之上。不过,我可能还要过很久才会把我在这方面非常广泛的研究整理发表,甚至可能在我有生之年都不会发表,因为我担心,如果我把自己在这个问题上的全部观点说出来,会引来愚人的叫喊。奇怪的是,除了欧几里得几何学中那个众所周知的、所有努力都徒劳无功且永远无法填补的漏洞之外,还有另一个缺陷,据我所知,至今还没有人对此提出批评,而且要消除这个缺陷(虽然有可能)绝非易事。那就是把平面定义为完全包含任意两点连线的曲面。这个定义包含的内容超出了确定曲面所需的必要条件,并且暗中包含了一个需要证明的定理。

——高斯《致贝塞尔的信》(1829年);《高斯全集》第8卷(哥廷根,1900年),第200页。

尚有一题,余究之近四十载,暇时重思,即几何之基……于此,余亦多所厘定,益信几何不可尽立之于先天。然吾之广研,恐久未付梓,或终吾生不刊,盖恐言吾全貌,必遭愚夫之哗。怪哉,欧氏几何有一众所周知之缺,诸般填补皆徒劳,且永不可补;另有一弊,据吾所知,未有人讥,欲除之(虽有可能)亦非易事。即平面定义为含任意两点连线之面,此定义过赅,隐一待证之理。

——高斯《与贝塞尔书》(1829);《高斯全集》卷八(哥廷根,1900),页二百。

2028 我还要补充一点,我最近收到了一篇来自匈牙利的关于非欧几里得几何学的短文,在这篇文章中,我重新发现了我自己的所有思想和成果,而且阐述得非常精妙……作者是一位非常年轻的奥地利军官,他是我早年一位朋友的儿子,1798年我经常和他父亲讨论这个话题,不过那时候我的想法还远没有达到这位年轻人通过独立思考所取得的成熟程度。我认为这位年轻的几何学家波尔约是一流的天才。

——高斯

《致格灵的信》(1832年);《高斯全集》第8卷(哥廷根,1900年),第221页。

又,近得匈牙利一文,论非欧几何,其中吾之诸般思想与成果,皆被重新发见,且阐发精妙……作者乃一少壮奥军官,吾早年一友之子。一七九八年,余常与其父论此,然彼时吾意远未及此少年独立思考所达之境。余谓此青年几何家波尔约,乃一流之才。

——高斯

《与格灵书》(1832);《高斯全集》卷八(哥廷根,1900),页二百二十一。

章节报错(免登录)
最新小说: 人在吞噬,盘龙成神 分家后,我打猎捕鱼养活一家七口 阳间路,阴间饭 人在超神,开局晋级星际战士 名义:都这么邪门了还能进步? 兽语顶流顾队宠疯了 迷踪幻梦 重生汉末当天子 国师大人等等我! 顾魏,破晓时相见